NOTES

Thin-layer chromatography of the peyote alkaloids*

The peyote cactus, Lophophora williamsii (Lem. ex SD.) Coult. (T.) (sym. Anhalonium lewinii Hennings), contains, besides the narootic mescaline, a number of other bases, which are derivatives of phenylethylamine or tetrahydroisoquinoline^{1,2}. The use of peyote ("mescal buttons") by the natives of Mexico as a hallucinogenic drug has lately also spread to other countries. Until the recent paper by McLAUGHLIN AND PAUL³ apparently no thin-layer or paper chromatographic procedures for the rapid identification of Lophophora bases had been published.

In this note several thin-layer chromatographic systems suitable for the separation and identification of the pevote alkaloids are described.

Methods and materials

Thin-layer chromatography was carried out as described earlier⁴ on silica gel coated glass plates (20×20 cm, 0.25 mm layer) except that the coated plates were dried overnight at room temperature. For details regarding solvent systems, see Table I.

The base fraction from a peyote cactus (fresh wt. ca. 100 g-0.4 g alkaloids) was

TABLE I

 R_F values \times 100 of peyote alkaloids

Silica Gel G chromatoplates with the following solvent mixtures:

(A) chloroform-ethanol-diethylamine (85:5:10 by wol.)

(B) chloroform-ethanol-diethylamine (85:10:5)(C) chloroform-ethanol-conc. NH₃ (85:15:0.4)(D) chloroform-*n*-butanol-conc. NH₃ (50:50:2.5)

(E) pyridine-conc. NH_a (90:10)

Alkaloid	Solvent system					(Colloun ^a
	Ā	B	Ċ	D	Æ	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
Phenolic						
Anhalamine	II	20			40	purple
N-Methyltyramine	31	31			32	wellkow
Tyramine	34	33			42	wellkow
Anhalonidine	39	51			5a	purpke
Hordenine	51	56			60	yvellkow
Anhalidine	55	65		<u> </u>	72	purple
Pellotine	63	70			69	Ibmalbke
Non-phenolic						
N-Methylmescaline			22	20	25	wellkow
Mescaline		·	24	31	36	Ibarowin
Anhalinine			30	4 I	48	yvelllow
O-Methylanhalonidine			33	45		yzellkonw
Anhalonine			45	58	<u>5</u> 6	yrelllow
Lophophorine	·		68	80	72	blue gray
N-Acetylmescaline			82	95	68	malke lbrowm

^a Colour with *o*-dianisidine reagent.

* Supported by the Swedish National Research Council. The technical assistance of Miss B. BURELL is appreciated.

isolated by chloroform extraction⁵. The evaporated chloroform extract was dissolved in 100 ml chloroform and passed through a 2×15 cm column of acid Celite (15 g Celite 545 and 4 ml 0.5 M H₃PO₄). The column was washed with 200 ml chloroform to remove non-basic compounds. The alkaloids were eluted with chloroform saturated with ammonia⁶. A solution of the alkaloids in methanol was applied to a column $(1 \times 20 \text{ cm})$ of Amberlite IRA 400 (OH) ion-exchange resin. The column was washed with 100 ml of 30 % aqueous methanol to yield the non-phenolic alkaloids. The phenolic alkaloid fraction was obtained by elution with 200 ml of a solution of 120 ml methanol, 60 ml water and 20 ml glacial acetic acid.

Alkaloids were located by the use of an o-dianisidine reagent (equal volumes of 0.5 % o-dianisidine in dilute HCl and 10 % NaNO₂ in water) or iodoplatinate reagent⁷.

Reference alkaloids were kindly supplied by Drs. A. BROSSI, Hoffman-La Roche Inc., and G. KAPADIA, Howard University, or isolated or synthesized according to known procedures (cf. ref. 1).

Results and discussion

The thin-layer chromatographic behaviour of the peyote alkaloids in several solvent systems and their colour reactions with the dianisidine reagent are recorded in Table I. This reagent produces a red colour with phenolic tetrahydroisoquinolines and a yellow or brown, fading colour with non-phenolic alkaloids.

Solvent system A was found to be must suitable for the separation of phenolic alkaloids and system D for non-phenolic alkaloids. With the exception of solvent system E, no system was found to resolve satisfactorily both phenolic and nonphenolic alkaloids.

Details of thin-layer and gas chromatographic separation of peyote alkaloids will be published at a later date.

Department of Pharmacognosy, Kungliga Farmaceutiska Institutet, Kungstengatan 49, Stockholm (Sweden)

JAN LUNDSTRÖM STIG AGURELL

- 1 H. G. BOIT, Ergebnisse der Alkaloidchemie bis 1960, Akademie-Verlag, Berlin, 1961, pp. 13-24, 210-215.
- 2 A. HOFMANN, Planta Med., 12 (1964) 341.
- 3 J. L. MCLAUGHLIN AND A. G. PAUL, Lloydia, 29 (1966) 315.
- 4 S. AGURELL, Acta Pharm. Suecica, 2 (1965) 357. 5 E. LEETE, J. Am. Chem. Soc., 88 (1966) 4218.
- 6 Pharmacopea Nordica, Editio Suecica, Vol. I, Apotekarsocietetens Förlag, Stockholm, 1964, pp.
- 74-75. 7 E. STAHL, Dünnschichts-Chromagraphie, Springer-Verlag, Berlin, 1962, p. 506.

Received April 13th, 1967

J. Chromatog., 30 (1967) 271-272